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Mesoscopic 141D system

Evolution and approach to steady state of a 141D system of
interacting spinless fermions from a domain wall initial state...

B — o u(x) T, -1 ()
z/l z/t
-1 —1/2 1/2 1 -1 —1/2 1/2 1
IR = fo Tr =To
Chemical potential Temperature

considering a subsystem [—¢, ¢] with lengths L > ¢ > 0.

For XX and XXZ models Antal et al., PRE 59 (1999); Rigol et al., PRL 98 (2007)
Lancaster, Mitra, PRE 81 (2010); Sabetta, Misguich, PRB 88 (2013); Liu, Andrei, PRL 112 (2014)
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Electric transport in the Luttinger model

Steady current in the final state Fermi sea in the final state

I=Gyx(pr—pr) = Gus —p-)

wr, left and pg right chemical potentials

fi4 right- and p— left-moving fermions (example for A = X" = 0)
G)\,)\ = K)\CQ/h renormalized Kane, Fisher, PRL 68 (1992)
G =¢e2/h universal Maslov, Stone, PRB 52 (1995)

Kawabata, J. Phys. Soc. Jpn. 65 (1996); Alekseev, Cheianov, Frohlich, PRB 54 (1996), PRL 81 (1998)
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Luttinger model

Luttinger Hamiltonian

H) = Z/ dz Yl (x) (—irvpd,) ¥, (x):

L/2

L/2

+A Y dz dy 9! (@), (2): V(@ — )L (1)1, (1)
—L/2
ror'==+

with short range, non-local potential V() and coupling X satisfying (*).

Tomonaga, Prog. Theor. Phys. 5 (1950); Luttinger, JMP 4 (1963); Mattis, Lieb, JMP 6 (1965)

|¥) = Ground state; :(---): = Normal ordering

(*) In Fourier space p € (27 /L)Z:

Vip)=V(-p),  AV(p) > —mvr/2, Vip)lpl T P20, ¢ > 0.
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Equilibrium correlation functions

Renormalized Fermi velocity

vy (p) =vpy\/1+ 2)\V(p)/7rvp

Luttinger parameter
Kx(p) = 1/\/1+ 2V (p)/mvF

Equilibrium two-point correlation function in the thermodynamic limit

@ @0 0) = 5o ([ a0 2P cospa 1) - 1))

Equilibrium exponent

Ki(p) + Ka(p)~"

m(p) = 3 -1
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<& Non-equilibrium Luttinger model



Quenched Luttinger model

Quantum quench Hy — H)/ from a uniform initial state for special
cases \ =0# XNand A #0 = \.

Cazalilla, PRL 97 (2006); lucci, Cazalilla, PRA 80 (2009); Mastropietro, Wang, PRB 91 (2015)

Luttinger Hamiltonian producing an initial domain wall density profile

— V()
L/2
HA,Hzﬂx—uz/L/ dw W () 6! (@), (2): Q /
T: 2 zfl

-1 ~1/2 1/2 1

using an external field W (x).
Quantum quench H) , — Hy o from a domain wall initial state for all

possible A and .

Langmann, Lebowitz, Mastropietro, PM, arXiv:1511.01884 (2015)
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Local observables

Evolution [¥3 () = e"Hx!|W, ) of the ground state |¥y ,,) of Hy .
o Compute expectation values of observables for finite L.
¢ Take thermodynamic limit L — oo.

o Study asymptotic behavior of observables as t — co.

Total density and current
R(z,t) = (U3, ()]p@)[ 03, (1), plz) = pi(z) + p—()

I(w,t) = (WA, (@R ,0), @) = ve(ps(2) — p-())
Densities p,(z) = i (x)y,.(x):
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Evolution following a quench

Total density

1 7R(‘,E7t)
-1 34 -1/2 -1/ 1/4 1/2 3/4 1
&
Current
1y I(=,1)
2m
x/l
-1 —3/4 -1/2 -1/4 1/4 1/2 3/4 1
1
Bz

Time t = 0.0¢/vp

Ground state of H) , evolved under Hy, for A =0, A’ = —0.96, and p = 1 with
interaction potential V (p) = (mvr/2) sech(ap) where a = 0.0025¢ and v = 1.
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Non-equilibrium Luttinger model

Evolution following a quench

Total density
1 R(Ivt)

-1 3/4  —1/2  —1/4 M 12 3/4 1 /
1|

Current
1 I(lat)

: - x/l
~1 —3/4  —1/2  —1/4 1/4 1/2 3/4 1 /

Time t = 1.0¢/vp

Ground state of H) , evolved under Hy, for A =0, A’ = —0.96, and p = 1 with
interaction potential V (p) = (mvr/2) sech(ap) where a = 0.0025¢ and v = 1.
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Evolution following a quench

Total density

1 4 R(z,)
—_"\A 27
-1 34 -1/2 -1/ 1/4 1/2 3/4 1

&

Current

i7I(z,t)

2m

; ; x/l

-1 —3/4 -1/2 -1/4 1/4 1/2 3/4 1

1

Bz

Time t = 2.0¢/vp

Ground state of H) , evolved under Hy, for A =0, A’ = —0.96, and p = 1 with
interaction potential V (p) = (mvr/2) sech(ap) where a = 0.0025¢ and v = 1.
Bty A | 18



Evolution following a quench

Total density

1 7R(937t)
—-—~/\ 2
‘ ‘ ‘ ‘ ‘ w0
-1 -3/4  -1/2  -1/4 1/4 1/2 3/4 1
_1
27
Current
1 7I(l1t)
2T
; ; ; f x/l
-1 -3/4  -1/2 -—1/4 1/4 1/2 3/4 1
_1
2m
Time t = 3.0¢/vp
Ground state of H) , evolved under Hy, for A =0, A’ = —0.96, and p = 1 with

interaction potential V (p) = (mvr/2) sech(ap) where a = 0.0025¢ and v = 1.
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Evolution following a quench

Total density
1 R(Ivt)

—1 -3/4  —1/2  —1/4 1/4 1/2 N
_

Current
1 I(lat)

~1 —3/4  —1/2  —1/4 1/4 1/2 3/4 1 /

Time t = 4.0¢/vp

Ground state of H) , evolved under Hy, for A =0, A’ = —0.96, and p = 1 with
interaction potential V (p) = (mvr/2) sech(ap) where a = 0.0025¢ and v = 1.
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Evolution following a quench

Total density
1 4 R(z,)

N ‘
-1 -3/4  —-1/2  -1/4 1/4 1/2 3/4\1
&

Current
1y I(=,1)

27
-1 —3/4 —i/2 —i/4 1)4 1)2 3/4 1

Ground state of H , evolved under Hy,

x/l

x/l

Time t = 5.0¢/vp

for A\ =0, N’ = —0.96, and p = 1 with
interaction potential V (p) = (mvr/2) sech(ap) where a = 0.0025¢ and v = 1.
B — e
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Evolution following a quench

Total density

iiR(r,t)
27
- ; x/l
-1 —3/4  -1/2  -1/4 1/4 1/2 3/4 1
_1
27
Current
iil(lat)
2m
-1 —3/4 -1/2 -1/4 1/4 1/2 3/4 1
1
Bz

Time t = 6.0¢/vp

Ground state of H) , evolved under Hy, for A =0, A’ = —0.96, and p = 1 with
interaction potential V (p) = (mvr/2) sech(ap) where a = 0.0025¢ and v = 1.
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Non-equilibrium correlation functions

Two-point correlation function in the thermodynamic limit

! ! —irvnt Ap(z,y,t) (z—
(UL (DL @), () [0, (1)) = e ror ArlewDE0 g (g y 1)

Ay (z,y,t) = contribution from external field
Y i A
Sr(z,y,t) = (X o (O] ()Y, (V)T ()

i oo My A (P) = Y5 (P) cos(2pvys (P)T)
= —————————— exXp / dp 2 >
2nr(x — y) + 0t 0 p

(cosp(z —y) — 1)>
Non-equilibrium exponents

Kx(p)(Ex(p) ™2 +1) + Kx(p) *(Kx(p)® +1)

M (p) = ; .
o (p) = Kr\(p)(Ex (p)~* = 1) ZKA(p)*l(Kx(W —1)

Different from the equilibrium exponents if A # X\ # 0.
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Asymptotic behavior

Theorem
If the interaction satisfies (*), then, in the thermodynamic limit,

. _ ﬁK)\’U)\/ /,LK)\’U)\/
tliglo R(‘T t) 0 tli{[olo I(.T,t) o v ’ hm Ar ( T, Y, ) 2 A
and

. R < v (p) N
tllglo Sr(@,y,1) = 2nr(z —y) + 40t oxp (/0 dp p (cosple ~y) 1))

with Ky = K\(p=0) and vy = vx(p = 0).

y

Langmann, Lebowitz, Mastropietro, PM, arXiv:1511.01884 (2015)
(*) In Fourier space p € (27 /L)Z:

dv(p)
dp

Vip) e c2m), 9 d‘;ﬁp) CL'R), n=0,1,2, \p > —rvor — 22V (p).
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Generalized canonical ensemble

Our system reaches a final steady state = there is equilibration,
but it is not the ground state of Hy, = there is not thermalization.

To describe the final state in integrable systems
— usual canonical ensemble generally not sufficient,
— need generalized canonical ensemble with more conserved quantities.
Rigol et al., PRL 98 (2007); Eisert, Friesdorf, Gogolin, Nat. Phys. 11 (2015)

o A = )\ Generalized canonical ensemble with conserved quant. Hy and Q,
given by Gibbs measure e ## as 3 — oo where

L/2

H=Hy=> (ir—p0)Qr, Q= dzpr(x), Y pe = 2p0.
r==£

r=+ —L/2

o XA # X % 0: Infinite number of conserved quant. needed. Left open.
lucci, Cazalilla, PRA 80 (2009); Langmann, Lebowitz, Mastropietro, PM, arXiv:1511.01884 (2015)
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Electrical conductance

Steady current: asymptotically in time

Kyuy
I = lim I(z,t) = 2L A%
t—o00 2m vy

Chemical potentials: two-point correlation functions suggest to identify

p Koy
’r‘_—

My — Ho = tll)r&AT(xagﬁt) = 2 uy

Renormalizations of I and p4 — p— cancel = electrical conductance

1 (1/2m) K vn /oy 1 e
G p—y — _—_———= —
Py — p— PR [N 2r h
is universal. (units where e = h = 1)
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Thermal conductance

CFT approach = thermal conductance .y ()

K =7T,/6

x/l

-1 —1/2 21

is universal for no or local interaction. -
R — 10

Bernard, Doyon, J. Phys. A: Math. Theor. 45 (2012), AHP 16 (2015)

Rieder, Lebowitz, Lieb, JMP 8 (1967); Spohn, Lebowitz, CMP 54 (1977); Kane, Fisher, PRL 76 (1996)
Aschbacher, Pillet, J. Stat. Phys. 112 (2003); De Luca, Viti, Bernard, Doyon, PRB 88 (2013)

Lorenz number is then also universal

K  nT/6 w2
TG Ty/2r 3

as in Wiedemann-Franz law for 141D system without spin.

Question: What happens for non-local interaction?
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.
Summary

o Exact analytical results for the evolution of the Luttinger model
with short range, non-local interaction following a quench.

o Approach to final steady state
e electrical conductance G = I/(u4 — j1—) = €*/h is universal

e non-equilib. exponents in general different from equilib. exponents

& Generalized canonical ensemble
e A = \: two-point correlation functions agree

o \ £ X £ 0: left open
¢ Thermal conductance K =7

Thank you for your attention!
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