Non-equilibrium physics in a quenched Luttinger model

Per Moosavi

KTH Royal Institute of Technology

In collaboration with E. Langmann, J. L. Lebowitz, and V. Mastropietro¹

Bressanone, February 8, 2016

¹arXiv:1511.01884 (2015)

Mesoscopic 1+1D system

Evolution and approach to steady state of a 1+1D system of interacting spinless fermions from a domain wall initial state...

considering a subsystem $[-\ell,\ell]$ with lengths $L>\ell>0$.

For XX and XXZ models

Antal et al., PRE 59 (1999); Rigol et al., PRL 98 (2007)

Lancaster, Mitra, PRE 81 (2010); Sabetta, Misguich, PRB 88 (2013); Liu, Andrei, PRL 112 (2014)

Electric transport in the Luttinger model

Steady current in the final state

$$I = G_{\lambda,\lambda'}(\mu_L - \mu_R) = G(\mu_+ - \mu_-)$$

 μ_L left and μ_R right chemical potentials μ_+ right- and μ_- left-moving fermions

Fermi sea in the final state

(example for
$$\lambda = \lambda' = 0$$
)

$$G_{\lambda,\lambda} = K_{\lambda}e^2/h$$
 renormalized

Kane, Fisher, PRL 68 (1992)

$$G=e^2/h$$
 universal

Maslov, Stone, PRB 52 (1995)

Kawabata, J. Phys. Soc. Jpn. 65 (1996); Alekseev, Cheianov, Fröhlich, PRB 54 (1996), PRL 81 (1998)

- Introduction
- Equilibrium Luttinger model
- Non-equilibrium Luttinger model
- Approach to steady state
- Transport

- Introduction
- Equilibrium Luttinger model
- ♦ Non-equilibrium Luttinger model
- Approach to steady state
- ♦ Transport

Luttinger model

Luttinger Hamiltonian

$$H_{\lambda} = \sum_{r=\pm} \int_{-L/2}^{L/2} dx : \psi_r^{\dagger}(x) (-irv_F \partial_x) \psi_r(x) :$$

$$+ \lambda \sum_{r,r'=\pm} \int_{-L/2}^{L/2} dx \, dy : \psi_r^{\dagger}(x) \psi_r(x) : V(x-y) : \psi_{r'}^{\dagger}(y) \psi_{r'}(y) :$$

with short range, non-local potential V(x) and coupling λ satisfying (*).

Tomonaga, Prog. Theor. Phys. 5 (1950); Luttinger, JMP 4 (1963); Mattis, Lieb, JMP 6 (1965)

$$|\Psi_{\lambda}\rangle = \text{Ground state}; \quad :(\cdots):=\text{Normal ordering}$$

(*) In Fourier space $p \in (2\pi/L)\mathbb{Z}$:

$$\hat{V}(p) = \hat{V}(-p), \qquad \lambda \hat{V}(p) > -\pi v_F/2, \qquad \hat{V}(p)|p|^{1+\varepsilon} \xrightarrow{|p| \to \infty} 0, \ \varepsilon > 0.$$

Equilibrium correlation functions

Renormalized Fermi velocity

$$v_{\lambda}(p) = v_F \sqrt{1 + 2\lambda \hat{V}(p)/\pi v_F}$$

Luttinger parameter

$$K_{\lambda}(p) = 1/\sqrt{1 + 2\lambda \hat{V}(p)/\pi v_F}$$

Equilibrium two-point correlation function in the thermodynamic limit

$$\langle \Psi_{\lambda} | \psi_r^{\dagger}(x) \psi_r(y) | \Psi_{\lambda} \rangle = \frac{i}{2\pi r(x-y) + i0^+} \exp\left(\int_0^{\infty} \mathrm{d}p \, \frac{\eta_{\lambda}(p)}{p} (\cos p(x-y) - 1) \right)$$

Equilibrium exponent

$$\eta_{\lambda}(p) = \frac{K_{\lambda}(p) + K_{\lambda}(p)^{-1}}{2} - 1$$

- Introduction
- Equilibrium Luttinger model
- Non-equilibrium Luttinger model
- Approach to steady state
- ♦ Transport

Quenched Luttinger model

Quantum quench $H_{\lambda} \to H_{\lambda'}$ from a uniform initial state for special cases $\lambda = 0 \neq \lambda'$ and $\lambda \neq 0 = \lambda'$.

Cazalilla, PRL 97 (2006); lucci, Cazalilla, PRA 80 (2009); Mastropietro, Wang, PRB 91 (2015)

Luttinger Hamiltonian producing an initial domain wall density profile

using an external field W(x).

Quantum quench $H_{\lambda,\mu} \to H_{\lambda',0}$ from a domain wall initial state for all possible λ and λ' .

Langmann, Lebowitz, Mastropietro, PM, arXiv:1511.01884 (2015)

Local observables

Evolution $|\Psi_{\lambda,\mu}^{\lambda'}(t)\rangle = e^{-iH_{\lambda'}t}|\Psi_{\lambda,\mu}\rangle$ of the ground state $|\Psi_{\lambda,\mu}\rangle$ of $H_{\lambda,\mu}$.

- \diamond Compute expectation values of observables for finite L.
- \diamond Take thermodynamic limit $L \to \infty$.
- \diamond Study asymptotic behavior of observables as $t \to \infty$.

Total density and current

$$R(x,t) = \langle \Psi_{\lambda,\mu}^{\lambda'}(t) | \rho(x) | \Psi_{\lambda,\mu}^{\lambda'}(t) \rangle, \qquad \rho(x) = \rho_{+}(x) + \rho_{-}(x)$$
$$I(x,t) = \langle \Psi_{\lambda,\mu}^{\lambda'}(t) | j(x) | \Psi_{\lambda,\mu}^{\lambda'}(t) \rangle, \qquad j(x) = v_{F}(\rho_{+}(x) - \rho_{-}(x))$$

Densities
$$\rho_r(x) = :\psi_r^{\dagger}(x)\psi_r(x):$$

Time $t = 0.0\ell/v_F$

Time $t = 1.0\ell/v_F$

Time $t = 2.0\ell/v_F$

Time $t = 3.0\ell/v_F$

Time $t = 4.0\ell/v_F$

Time $t = 5.0\ell/v_F$

Time $t = 6.0\ell/v_F$

Non-equilibrium correlation functions

Two-point correlation function in the thermodynamic limit

$$\langle \Psi_{\lambda,\mu}^{\lambda'}(t)|\psi_r^{\dagger}(x)\psi_r(y)|\Psi_{\lambda,\mu}^{\lambda'}(t)\rangle = e^{-irv_F^{-1}A_r(x,y,t)(x-y)}S_r(x,y,t)$$

 $A_r(x, y, t) = \text{contribution from external field}$

$$\begin{split} S_r(x,y,t) &= \langle \Psi_{\lambda,0}^{\lambda'}(t) | \psi_r^\dagger(x) \psi_r(y) | \Psi_{\lambda,0}^{\lambda'}(t) \rangle \\ &= \frac{i}{2\pi r(x-y) + i0^+} \exp\left(\int_0^\infty \mathrm{d}p \, \frac{\eta_{\lambda,\lambda'}(p) - \gamma_{\lambda,\lambda'}(p) \cos(2pv_{\lambda'}(p)t)}{p} \left(\cos p(x-y) - 1 \right) \right) \end{split}$$

Non-equilibrium exponents

$$\eta_{\lambda,\lambda'}(p) = \frac{K_{\lambda}(p)(K_{\lambda'}(p)^{-2} + 1) + K_{\lambda}(p)^{-1}(K_{\lambda'}(p)^{2} + 1)}{4} - 1$$
$$\gamma_{\lambda,\lambda'}(p) = \frac{K_{\lambda}(p)(K_{\lambda'}(p)^{-2} - 1) + K_{\lambda}(p)^{-1}(K_{\lambda'}(p)^{2} - 1)}{4}$$

Different from the equilibrium exponents if $\lambda \neq \lambda' \neq 0$.

- Introduction
- ♦ Equilibrium Luttinger model
- Non-equilibrium Luttinger model
- Approach to steady state
- ♦ Transport

Asymptotic behavior

Theorem

If the interaction satisfies (*), then, in the thermodynamic limit,

$$\lim_{t \to \infty} R(x,t) = 0, \qquad \lim_{t \to \infty} I(x,t) = \frac{\mu}{2\pi} \frac{K_{\lambda} v_{\lambda'}}{v_{\lambda}}, \qquad \lim_{t \to \infty} A_r(x,y,t) = r \frac{\mu}{2} \frac{K_{\lambda} v_{\lambda'}}{v_{\lambda}}$$

and

$$\lim_{t \to \infty} S_r(x, y, t) = \frac{i}{2\pi r(x - y) + i0^+} \exp\left(\int_0^\infty \mathrm{d}p \, \frac{\eta_{\lambda, \lambda'}(p)}{p} \left(\cos p(x - y) - 1\right)\right)$$

with
$$K_{\lambda} = K_{\lambda}(p=0)$$
 and $v_{\lambda} = v_{\lambda}(p=0)$.

Langmann, Lebowitz, Mastropietro, PM, arXiv:1511.01884 (2015)

(*) In Fourier space $p \in (2\pi/L)\mathbb{Z}$:

$$\hat{V}(p) \in C^2(\mathbb{R}), \quad \frac{\mathrm{d}^n \hat{V}(p)}{\mathrm{d}p^n} \in L^1(\mathbb{R}), \ n = 0, 1, 2, \quad \lambda p \frac{\mathrm{d}\hat{V}(p)}{\mathrm{d}p} > -\pi v_F - 2\lambda \hat{V}(p).$$

Generalized canonical ensemble

Our system reaches a final steady state \implies there is equilibration, but it is not the ground state of $H_{\lambda'} \implies$ there is not thermalization.

To describe the final state in integrable systems

- usual canonical ensemble generally not sufficient,
- need generalized canonical ensemble with more conserved quantities.

Rigol et al., PRL 98 (2007); Eisert, Friesdorf, Gogolin, Nat. Phys. 11 (2015)

 \diamond $\lambda=\lambda'$: Generalized canonical ensemble with conserved quant. H_{λ} and Q_r given by Gibbs measure $e^{-\beta H}$ as $\beta\to\infty$ where

$$H = H_{\lambda} - \sum_{r=\pm} (\mu_r - \mu_0) Q_r, \qquad Q_r = \int_{-L/2}^{L/2} dx \, \rho_r(x), \qquad \sum_{r=\pm} \mu_r = 2\mu_0.$$

 $\diamond \lambda \neq \lambda' \neq 0$: Infinite number of conserved quant. needed. Left open.

Iucci, Cazalilla, PRA 80 (2009); Langmann, Lebowitz, Mastropietro, PM, arXiv:1511.01884 (2015)

- Introduction
- ♦ Equilibrium Luttinger model
- ♦ Non-equilibrium Luttinger model
- ♦ Approach to steady state
- ♦ Transport

Electrical conductance

Steady current: asymptotically in time

$$I = \lim_{t \to \infty} I(x, t) = \frac{\mu}{2\pi} \frac{K_{\lambda} v_{\lambda'}}{v_{\lambda}}$$

Chemical potentials: two-point correlation functions suggest to identify

$$\mu_r - \mu_0 = \lim_{t \to \infty} A_r(x, y, t) = r \frac{\mu}{2} \frac{K_{\lambda} v_{\lambda'}}{v_{\lambda}}$$

Renormalizations of I and $\mu_+ - \mu_-$ cancel \implies electrical conductance

$$G = \frac{I}{\mu_+ - \mu_-} = \frac{(\mu/2\pi)K_{\lambda}v_{\lambda'}/v_{\lambda}}{\mu K_{\lambda}v_{\lambda'}/v_{\lambda}} = \frac{1}{2\pi} = \frac{e^2}{h}$$

is universal.

(units where $e = \hbar = 1$)

Thermal conductance

CFT approach ⇒ thermal conductance

$$K = \pi T_0/6$$

is universal for no or local interaction.

Bernard, Doyon, J. Phys. A: Math. Theor. 45 (2012), AHP 16 (2015)

 $\begin{array}{c|c}
T_L - T_0 & \uparrow^{T(x)} \\
\hline
-1 & -1/2 & \downarrow^{T(x)} \\
\hline
T_R - T_0
\end{array}$

Rieder, Lebowitz, Lieb, JMP 8 (1967); Spohn, Lebowitz, CMP 54 (1977); Kane, Fisher, PRL 76 (1996) Aschbacher, Pillet, J. Stat. Phys. 112 (2003); De Luca, Viti, Bernard, Doyon, PRB 88 (2013)

Lorenz number is then also universal

$$L_{\text{WF}} = \frac{K}{T_0 G} = \frac{\pi T_0 / 6}{T_0 / 2\pi} = \frac{\pi^2}{3}$$

as in Wiedemann-Franz law for 1+1D system without spin.

Question: What happens for non-local interaction?

Summary

- Exact analytical results for the evolution of the Luttinger model with short range, non-local interaction following a quench.
- Approach to final steady state
 - electrical conductance $G = I/(\mu_+ \mu_-) = e^2/h$ is universal
 - non-equilib. exponents in general different from equilib. exponents
- Generalized canonical ensemble
 - $\lambda = \lambda'$: two-point correlation functions agree
 - $\lambda \neq \lambda' \neq 0$: left open
- \diamond Thermal conductance K = ?

Thank you for your attention!