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1. General background and basic ideas.

Zeta Regularization (ZR): to give meaning via analytic continuation
to ill-defined expressions appearing in mathematics and physics.
(Minakshisundaram and Pleijel, 1945; Seeley, 1967; Ray and Singer, 1971)

e A textbook example (¢ = Riemann zeta function):
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e Often used to treat the divergences of quantum field theory (QFT),
especially, in connection with vacuum effects.

(Dowker and Critchley, 1975; Hawking, 1977; Wald, 1979; Bytsenko, Cognola,
Elizalde, Kirsten, Moretti, Vanzo, Zerbini, 1985-today)

Casimir effect (CE): physical phenomena related to the vacuum state
of a quantum field interacting with classical boundaries/potentials.

Study CE using ZR.
Case study: Hermitian scalar field.
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e Rigorous viewpoint on many divergent expressions in QFT :
the field is an operator valued distribution = pointwise evaluation
of field polynomials (and of corresponding VEVs) is ill-defined.

e Standard zeta approach:
o Euclidean formulation in terms of (formal) functional integrals;
o typical assumption: elliptic operators with pure point spectrum
— ZR implemented via eigenfunction expansion techniques.

e Novel results:
o fully rigorous analytic setting for ZR in the framework of
Wightman quantization
o point and continuous spectrum handled without differences;
o analysis of some exactly solvable cases.
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2. Functional analytic framework.

e Basic elements:
o (H,(|)) =H = abstract separable Hilbert space;
o A :Dom(A) C H — H, strictly positive, essentially self-adjoint.

e Spectral theorem — A~° (s € C);
— e " (heat), e tVA (cylinder, [Fulling]) (teC).

e Consider the inner products (g|f), := (A"/?g|A"?f) (r € R):
o H' := completion of Dom(A"/2) w.r.t. (| );
o HT :=,cgH" with Fréchet topology;
o "= = J,cgH" with inductive limit topology.
= HO=H and H EHY i r>u (r,ue RU{Eo0}).
e 31 (|):U,cg "xH"— C extension of the inner producton?,
s.t. (| )H™"xH" (reR)is a continuous, sesquilinear Hermitian form.

isom

= H" = (H") = topol. dual of H" (r € RU{+0c0}).
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o JIAS e tA e tVA . =0 4 71759 (5t € C with Rt > 0)
continuous extensions of A5, et e~tV4 on ¥
= restrictions to finite order spaces fulfill norm bounds
and depend analytically on the parameters.

e Typical application:

o ’H:LQ(Q), with QCR9 any open subset (or Riemannian manifold);

o A= (—=A+V)[Dy, with A = Laplacian on RY, V€ C>®(Q),
D4 CL%(Q) a suitable domain (keeping into account b.c.).

In this case: H" < HL _(Q) — C/(Q) (€N, r>j+d/2).

loc
o Jloy e H > (xeQ) s.t. (d|f)=Ff(x) (fEH" r>d/2): Dirac delta.
e Let B: Dom(B)CH > — H > and assume 36>0, jeN s.t,,

Vji4jo <Jj, B:Hetd/240) _ q1h+d/240 s continuous
< the integral kernel of B is B(x,y) := (6x|Bdy) (x,y € Q).

= (Bf)(x)= [,dy B(x,y)f(y) (Vf€L?(Q)) and B(, )€ (QxQ).
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e The Dirichlet kernel is A~°(x,y). For Rs>(j+d)/2 one has
A™5(,)ed(QxQ) and s 029 A=5(x,y) is analytic (x,y€Q);

o The heat and cylinder kernels are e “!(x. y), e *VA(x,y) (Rt > 0).

e Derive the Mellin relations (for s> d/2)
+oo

AT (x0y) = % /0 de el e (x,y) = % / dt 21 etV (x,y)

0
(holding also for y = x € Q; similar relations for 9285 A~5(x,y)).

e Construct the analytic continuation of A7°(x,y):
1) Standard method using the heat kernel asymptotics: if 3NN,

a,: QxQ — IR (n=0,...,N), ry(t;x,y) = O(tN*1) (t—0%) st
e t(x,y) = td/2 (Zn 0 an(X, y) "+ ry(t; x, y)) then for s >d/2—(N+1)
A7 (xy) =

N 1 +oo
1 an(x,y) / _d_q —1_—tA

> + [t (%, y —|—/dtt5 e (x,y)].
r(s) (,,:0 s+n—9 Jo (%) 1 (o)
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e The Dirichlet kernel is A~°(x,y). For Rs>(j+d)/2 one has
A™5(,)ed(QxQ) and s 029 A=5(x,y) is analytic (x,y€Q);

o The heat and cylinder kernels are e “!(x. y), e *VA(x,y) (Rt > 0).

e Derive the Mellin relations (for s> d/2)
+oo

AT (x0y) = % /0 de el e (x,y) = % / dt 21 etV (x,y)

0
(holding also for y = x € Q; similar relations for 9285 A~5(x,y)).

e Construct the analytic continuation of A7°(x,y):

2) Integration by parts: if IN€N, H : [0, +00) ><Q><Q — Rst.
H(;x,y)€ C([0,+00)) (x,y€Q), e “(x.y) = s H(tix.y), then
for Rs > d/2—N

A7 (xy) =
Sk T g
(s—9) . (s—3+N-— 1)r()/0d” MR x,y)

Zeta regularization and the Casimir effect: a functional analytic framework. Davide Fermi



e The Dirichlet kernel is A~°(x,y). For Rs>(j+d)/2 one has
A™5(,)ed(QxQ) and s 029 A=5(x,y) is analytic (x,y€Q);

o The heat and cylinder kernels are e “!(x. y), e *VA(x,y) (Rt > 0).

e Derive the Mellin relations (for s> d/2)
+oo

AT (x0y) = % /0 de el e (x,y) = % / dt 21 etV (x,y)

0
(holding also for y = x € Q; similar relations for 9285 A~5(x,y)).

e Construct the analytic continuation of A7°(x,y):
3) Hankel representation: if 3U C C with [0,400) C U,
H : [0, +oo)><Q><Q — Rs.t. H(;x,y): U — C is analytic (x,y € Q),
e ™VA(x,y) = td H(t; x,y), then for all s € C () = Hankel contour)

—2ins ri-=2
A5 (x,y) = L ) ( ) /dt t>" 9L H(t; x,y) .
2I7T 9
olf s=—k/2, k€N, residue theorem = easy computation.
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3. Zeta-regularized scalar field.

e Canonical quantization:
o §Y(H):= @, H'"= bosonic Fock space on H := L?(Q);
o 4°(h) (heH) = creation/annihilation operators on Fy ()
(8 (H):= finite particle subspace; [47(h), 87 (k)] C (h|k)L; 4~ (h)v = 0);
o The Wightman field at time zero is

a(h) = I (5‘(A—1/4h) + §+(A_1/4h)) (he H1/?).
e Time evolution via second quantization (t € R = time):
Belh) =T(A)p(m)T(e7™ ) (he ™2
= Klein-Gordon eq.: (0u@:(h) + Pe(Ah))F=0 (feFy(H)).
eVXEQ ¢ H V(S EH T, r>d/2) =
pointwise evaluation of the field “@(x) := $(dx)" is ill-defined.

— Basic idea: define a regularized delta (x€R = mass parameter)
5 = (A/R?) Y45 € T for Ru > d—2r.
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e The zeta-regularized field at a point x = (t,x) € RxQ is
2U0) = 208 (Ru>d—1).
e The zeta-regularized stress-energy tensor is (u,v € {0, ...,d})
Ti,(x) = (1-2€) 9.8"(x) 0 9,8 (x) +
+ (% = 26) (D@ (x)rP"(x) + V(X) 2“(x)2) — 260" (x) 0 D8 (x)

o well-defined for Ru > d + 3;
o by analogy with classical theory (§ € R conformal parameter);
o AoB:=(AB+BA)/2 = T" (x)=T"(x).

% v
e The zeta-reg. stress-energy VEV is (v| ﬁ’jl,(x)v) = (v 7A'L’j,/(x)V>
o connection with the Casimir effect;
o forRu>n+d+1, themap Q35 x+— (v\f’iu(x)w is C";
o the properties of integral kernels give, e.g.,

| Tl v) =
K[ (G40 AT (x9) + (1= (00,4 V() A% (x.)

y=x
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e The renormalized VEV is defined via analytic continuation (x€Q):

(I T () Vren = RP| (| T, () v)

Qv
RP|,=o := regular part of the Laurent expansion at u =0.

N.B.: Mellin relations and the asymptotic expansion of the heat kernel
= d analytic continuation, meromoprhic near u =0

= Vx€Q, (v|T,(X)V)en is well-defined and finite.

e Related observables:
o the renormalized pressure at x € 92 is (n(x)=outer normal at x)

pr(x) := RP U:O<V|‘f",1€'(x) v>n’(x) (i,j=1,..,d).

o the renormalized energy is

gren = RPlu:O/ dx (v[Tgo(x) v) .
Q
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4.1 The harmonic background potential.
e For simplicity: massless field, 3D isotropic harmonic potential
Q=R3 V() =MxP\A>0 = A=-A+Mx?

(generalizations: massive field, anisotropic potentials, higher dimension).

e Actor and Bender (1995): total energy, not the stress-energy tensor.

e Computational methods:
o heat kernel: e tA(x,y) = Mehler kernel;
o pass to rescaled spherical coordinates: r := \|x| € (0, +00);
o the Mellin relations give (for Ru > 4)
Tu )\4 K\ e —3+4 u
V| T (r)v) = @ (X)/o dr 77772 H;gu)(T;f) ;

where 7 — H“)(r; r) is smooth on [0, +00) ;

@]

3-fold integration by parts = analytic continuation to {Ru>—2}

Wl T2 (r)v) = — al (“)”/+°§T o HW (7 1)
o -G W) Jy T,
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e The renormalized stress-energy VEV is ({ = conf., B = non-conf.)
<V| 7A—/W(r)“’>ren =
X(TEO() + MaTEI (1) + (6 = 1) (TS™(r) + MaTE™ ()]

+oo H N 2 .
(a0)/ \._ _r tanh’l’[ polinomial in r* with ] o 2K
Tiw(r) = 0 dre coefficients depending on 7]’ Miex:= vem +21n A/
e Numerical evaluation of integral representations for fixed r € (0,+00):
(0,0) (1,0)
o Too (1) o Too (1)
2 ‘ . s 0
wl
60F -Sr
|
1o}
201
2 4 6 8 o'

e Small and large r = A|x| asymptotics :
exact expressions and explicit remainder estimates.
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e The renormalized stress-energy VEV is ({ = conf., B = non-conf.)
V| Ty () V) ren =
X(TEO(r) + M TEI(N) + (6= 1) (T10™() + Mo TE™ ()]

400 . . 2 .
(a,0)/ \ . 2 tanh [ polinomial in r= with ] o 2K
T (r) '_/0 dre coefficients depending on 7]’ Mpex:=vEm +2In A

e Numerical evaluation of integral representations for fixed r € (0,+00):

(0,m) - (1,m)
rom Too (1) g Too (1)
L L - r

_oosl 006}

—0.10} ool

-0.15F
0.02 -

-0.20 -

_ozst 0 2 4 6 8 '

e Small and large r = A|x| asymptotics :
exact expressions and explicit remainder estimates.
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4.2 Parallel planes configuration: Robin b.c.

e Case study: massless field (V' =0), 3D model, Robin b.c.
Q=(0,a)xR? 5 (x},x*,x%) (a>0), A=-A
(1=B0x)@la—g = (1=F0x)Pla_, =0 (8>0).

e Romeo and Saharian (2002): double series/integral representation.
e Computational methods (like Dirichlet, Neumann and periodic b.c.):
o reduced 1D problem on (0, a):
integral representation of the cylinder kernel e tVA1(x1 y1)
< VxLyle(0,a), [0,400) 3t — e VA1 (xL y1) is meromorphic
(t=0 the only pole) and decays exponentially for t — +oc.

o Hankel representations of the Mellin relations, evaluated with
the residue theorem, give, e.g.,

<"‘7A_00(X1)">ren =

1 Res <t14 (G- DA+ E(3- f)axlyle*t@}ylle; t:0>.

Davide Fermi
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e The renormalized stress-energy VEV:
o (| TV ren = (TS + €-1 (T\®)) (= conf. + non conf.);
o diagonal — non-vanishing components :
o g
(Tos)) = 1) = ~(T3)) = ~(T53)) =
(like in the cases of Dirichlet or Neumann b.c.)

(Téo.)> =— <T2(2.)> =— (T3(3.)> = (single) integral representation

<Tf§0.)> vs. x! (a=1,8=0.04) <T(§0.)> vx. (x},8) (a=1)

<Te

1000 -

» J\

O fm—— 1 RE Y

0.2 04 06 08 1.0

_so0f

10000

e |t appears that f v\ Too V) ren diverges (but E™" < oo ~~ anomaly).
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Summary and outlook.

e Summary:
o abstract formalism to study integral kernels;
o ZR in the framework of canonical quantization;

o computational effectiveness in some examples.

e Further developments:
o explicit analysis of other configurations;

o study boundary divergences: semiclassical boundaries
[Ford,1998];

o functional-integral approach: regularized Gaussian measures.
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Thank you for the attention!
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Heuristic arguments for divergent expressions in QFT.

e Canonical quantization over a fixed spatial domain Q CR? of
the Klein-Gordon field: (9 —A)@(t,x) =0, (t,x)eRxQ

< creation/annihilation operators expansion (4,|0) = 0, Vk€K)

~ dk —iw N iwgt = N
Pt = [ o €7k Fi(x) 8 + et F(x) a |

(Fi)xex Hilbert basis of L2(Q), —AFx=wZFi, [an,al] = Opk;
e Computation of the field squared VEV gives a divergent sum

over modes (formally related to the integral kernel of (—A)~2)

00(t070) = [ 2 R0Rute) (=3 (5~ H4).

A Example: Q:=(0,1) with Dirichlet b.c. =
Fi(x) = V2sin(kmx), wx = km for k =1,2,3,... =

X sin?(kmx
Olp(e.0710) = 3 S m)
k=1
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